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1. INTRODUCTION 
 
High resolution meteorological and air quality 

forecasts are needed for environmental 
management and public health. Traditional models 
like the Weather Research and Forecasting (WRF) 
model often struggle to capture small-scale 
meteorological phenomena in complex terrains 
and urban areas like Edmonton, Canada, known 
for its extreme cold climate. These limitations arise 
from inadequate meso-scale resolutions that 
cannot resolve finer-scale processes such as 
eddies and turbulence occurring over meters to 
kilometers (Holtslag et al., 2013; Wiersema et al., 
2020) and challenges in representing complex 
interactions between energy balance, topography, 
and boundary-layer dynamics (Jfworrek et al., 
2023). The limitations lead to inaccurate 
predictions of near-surface air quality, especially 
regarding pollutant distributions.  

While increasing model resolution using large-
eddy simulation (LES) techniques resolves small-
scale processes within the planetary boundary 
layer (PBL), this approach is computationally 
intensive and limited by incomplete understanding 
of stable PBL physics (Bao et al., 2018; Crosman 
& Horel, 2017; Liu et al., 2020). 

An alternative, more computationally efficient 
method is four-dimensional data assimilation 
(FDDA), or "nudging," which adjusts models 
toward observations or gridded-analysis data 
through dynamical relaxation without violating 
meteorological consistency (Deng et al., 2009; 
Reen, 2016; Stauffer et al., 1991). FDDA methods 
in WRF, including analysis (grid) nudging and 
observational nudging, have shown improvements 
in meteorological simulations and subsequent air 
quality predictions (Desamsetti et al., 2022; Spero 
et al., 2018; Wang & Cui, 2018). However, 
analysis nudging may negatively impact 
simulations of humidity and wind speed (Ma et al., 
2016; Tran et al., 2018). Observational nudging 
has effectively improved simulations of surface 
temperature, wind fields, and PBL height, leading 
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to better air quality forecasts (J. Li et al., 2022; X. 
Li et al., 2016). 

Data-driven techniques like deep learning 
have emerged to enhance the data assimilation 
process in meteorology and air quality fields by 
capturing nonlinear relationships and patterns that 
traditional methods lack (Huang et al., 2023; Niu et 
al., 2024). This capability offers potential 
improvements in representing micro-scale 
atmospheric processes, particularly in complex 
terrains and under stable atmospheric conditions 
(Guo et al., 2024; He et al., 2023). 

This study introduces a Residual Encoder-
Decoder model with an attention mechanism to 
generate high-resolution (1.33 km) gridded data by 
downscaling coarser datasets. The model is 
trained in two stages: first, it downscales from the 
NCEP Final Analysis at 1-degree (~108 km) 
resolution to the NCEP North America Mesoscale 
(NAM) at 12 km resolution over the Edmonton 
domain to learn essential patterns. It uses the 
learned weights to downscale from the 12 km grid 
to a 1.33 km grid without direct fine-scale data. By 
employing residual learning, the model predicts 
differences between interpolated low-resolution 
data and the high-resolution target, refining details 
and avoiding overfitting. The attention mechanism 
enhances prediction accuracy by focusing on 
relevant spatial features in the refined domain.  

The high-resolution data generated by the 
deep learning model are assimilated into the WRF 
model using observational nudging. This 
assimilation aims to improve meteorological 
predictions by reducing biases in temperature, 
wind speed, wind direction, and relative humidity—
parameters crucial during extreme weather events 
characteristic of Edmonton's climate. Additionally, 
the Community Multiscale Air Quality (CMAQ) 
model is utilized to assess how the improved 
meteorological fields enhance the prediction of air 
pollutant concentrations, specifically PM₂.₅ and 
ozone, within the study area. By integrating 
advanced data-driven techniques with traditional 
meteorological models, this study bridges the gap 
between the availability of coarse-resolution data 
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and the need for high-resolution predictions. The 
proposed approach enhances both meteorological 
and air quality prediction accuracy, offering a 
valuable tool for environmental forecasting in 
regions with complex weather patterns. 

 
2. PROBLEM DEFINITION, MODEL & 
METHODOLOGY 
 
2.2 Model Domain 

 
The study area is the City of Edmonton in 

Alberta province in Canada. To better capture the 
topographical features of the study area and their 
impacts on the local atmospheric process, three 
two-way nested domains with increasing grid 
resolution is used in WRFv4.5. The largest domain 
at 9 km grid resolution, covers the majority of the 
Alberta, Southeast of British Columbia and 
Eastern Saskatchewan. The two inner domains 
cover the Greater Edmonton Area (GEA) and the 
City of Edmonton at 3km and 1km spatial 
resolution, respectively (Fig. 1).  

This approach is recommended to reduce the 
effect of the coarse boundary values, fed into the 
largest domain, on the intermediate and innermost 
domains, improving the prediction accuracy of the 
model (Malakar et al., 2012). 

 
Fig. 1: Nested Computational Domain over Alberta, 

Canada 

2.2 WRF-CMAQ Setup 
 
The Weather Research and Forecasting 

(WRF) model v4.5 (Skamarock et al., 2019) is 
used to simulate meteorological parameters such 
as temperature, relative humidity, wind speed, and 
wind direction over the study area. WRF offers a 
variety of physics schemes to capture the complex 
interactions of atmospheric processes. For this 
study, the Thompson scheme (Thompson et al., 

2004) is used for microphysics parameterization, 
while long- and short-wave radiation were 
resolved using the Rapid Radiative Transfer Model 
for Global Climate Models (RRTMG) schemes 
(Iacono et al., 2008). Additionally, the revised 
MM5 scheme (Jiménez et al., 2012) and the 
Unified Noah Land Surface Model (Tewari and 
Coauthors 2004) are selected to represent the 
surface layer and land surface fluxes within the 
domain. Finally, the Yonsei University scheme is 
applied to model horizontal and vertical mixing 
near the surface and within the planetary 
boundary layer (Hong et al., 2006). The Global 
Forecast System (GFS) weather analysis data of 
the National Center for Environmental Protection 
(NCEP) is used for initialization and boundary 
values of the coarsest domain. WRF in-house data 
assimilation module is deployed to nudge the 
prognostic variables toward the observation data 
which will be explained in detail in the following 
section.  

The air quality scenarios are conducted using 
the Community Multiscale Air Quality (CMAQ 
V5.4) modeling framework. CMAQ integrates 
meteorological data, emissions inventories, and 
detailed chemical mechanisms to model the 
transport, transformation, and deposition of 
atmospheric pollutants such as ozone, particulate 
matter, and air toxics. The model employs 
Piecewise Parabolic Method (PPM) for advection 
processes (Colella & Woodward, 1984), Eddy 
Diffusion theory (SMAGORINSKY, 1963) to 
account for the horizontal diffusion fluxes and the 
Euler Backward Iterative (EBI)(Hertel et al., 1993) 
method for solving stiff chemical kinetics. The gas-
phase and aerosol-phase chemistry in this study 
are represented with the Carbon Bond 6 (CB6) 
and the Aerosol Module 7 (AE7), respectively. The 
boundary and initial condition for the CMAQ 
domain are generated using the northern 
hemisphere monthly modeling results of CMAQ 
available online through the CMAS Center 
database. The anthropogenic emission data are 
acquired from the latest Alberta’s emission 
inventory compiled by the NOVUS Env.  and 
RAMBOLL for the base year 2013 (Nopmongcol et 
al., 2018) and prepared by EPA’s SMOKE V5.0 for 
the CMAQ. The biogenic emissions are processed 
inline using the Biogenic Emission Inventory 
System (BEIS V4.0). Finally, the WRF-CMAQ was 
setup in a one-way (decoupled) approach.  
 
2.4. Data-driven Weather Downscaling 
Model 
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A Residual Encoder-Decoder model with an 
Attention Mechanism is utilized to downscale 
weather variables, including temperature, wind 
speed, wind direction, and relative humidity at the 
surface level. The model downscales data from 
the coarser NAM (12 km) analysis resolution to 
high-resolution (1.33 km) input, which is used to 
nudge the WRF forecast for the finest domain ove 
r Edmonton. This approach is inspired by the work 
of Serifi et al.(Serifi et al., 2021), who employed a 
UNET-based neural network for spatiotemporal 
downscaling of climate data. 

The training process consists of two stages. 
First, the model is trained on 108 km GFS data to 
reconstruct the 12 km NAM analysis, allowing it to 
capture the general features of the dataset. 
Afterward, the model downscales the NAM 
analysis to 1.33 km resolution using the learned 
weights. The Encoder-Decoder architecture 
captures critical low-resolution features via the 
encoder and reconstructs high-resolution outputs 
through the decoder. Incorporating the Attention 
Mechanism directs the model's focus to the most 
relevant spatial details during the downscaling, 
improving accuracy by emphasizing fine-grained 
feature. 

To enhance efficiency and accuracy, the 
model employs Residual Learning. Instead of 
predicting the high-resolution data outright, the 
model first generates an initial estimate using 
bilinear interpolation. The residual component, 
representing the difference between the bilinear 
interpolation and the true high-resolution data, is 
predicted by the model. This approach simplifies 
the learning task by focusing on fine-tuning the 
bilinear interpolation, mitigating overfitting risks. 
The final high-resolution output is given by: 

 
𝑓!"" (𝑋) = 𝑓!"" (𝑋)bilinear	interpolation + 𝑟 )𝑓!"" (𝑋)*

residual
 Eq. 1 

 
Fig. 2: The Architecture of the Residual Encoder-

Decoder Climate Downscaling Model 

Model performance was validated using the Root 
Mean Squared Error (RMSE) and the Coefficient 
of Determination (R²), measuring prediction 
accuracy and the proportion of explained variance, 
respectively. 
 
 

2.5 Modeling Scenario 
   
To improve the predicted concentrations of 

criteria air contaminants (CACs) by CMAQ over 
Edmonton during the summer period from July 10 
to July 22, 2019, we fine-tuned WRF predictions 
using the nudging technique implemented in the 
WRF Data Assimilation module (Reen, 2016). 
WRF provides two primary methods for nudging: 
observation nudging (ON) and analysis nudging 
(AN). These techniques relax the meteorological 
variables in each grid point at regular intervals, 
based on the availability of nudging data. 

Three scenarios were designed to evaluate 
the impact of nudging the innermost domain on 
both WRF and CMAQ predictions. The first 
scenario serves as a reference with no nudging 
applied to the meteorological data (NON). In the 
second scenario, the AN method is applied to 
nudge WRF output at the surface level toward 
NCEP NAM 12 km analysis data (AN-NAM). In the 
third scenario, higher-resolution analysis data with 
a 1.33 km grid spacing—generated by the weather 
downscaling model described in Section 2.4—
were used as input for observation nudging (ON-
DD). The third scenario aims to assess the 
advantages of using the high-res downscaled 
model data compared to the coarse grid analysis 
used in the second scenario for nudging 
applications. The nudging coefficients for AN-NAM 
and ON-DD cases are set according to the WRF-
DA guidelines.  

 
3. RESULTS & DISCUSSION 
 
3.1 Data-driven Downscaling Output 
 

The NCEP GFS (108 km) and NAM (12 km) 
analyses at 6-hr intervals for the entire 2019 is 
used to train the downscaling model over the 
Edmonton domain. In particular, the model is 
trained to downscale the temperature, horizontal 
wind speed components and the relative humidity 
parameters which are subsequently used for data 
ingestion in the ON-DD scenario. Table 1 shows 
the performance metric of the model for the 
corresponding parameters over the validation 
dataset.  

Table 1: Downscaling Performance Metrics for the 
Surface Weather Parameters 

Parameter MAB RMSE R2 

Temp. (° C) 0.94 1.24 98.4 
Wind (U Comp.) (ms-1) 0.34 0.58 93.1 
Wind (V Comp.) (ms-1) 0.44 0.65 91.8 
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3.2 Impacts of the Nudging on the WRF 
Output 
 

To evaluate the performance of the three 
scenarios, ground-level WRF outputs were 
compared with surface observations from 12 
weather and air quality monitoring stations across 
Edmonton. Hourly surface-level temperature, wind 
speed, wind direction, and relative humidity were 
compared with the corresponding WRF output 
values. Fig. 3 presents the time series of 
temperature and wind speed at the St. Albert and 
Edmonton East stations, located in the northwest 
and East of Edmonton, respectively. The AN-NAM 
and ON-DD cases resulted in lower mean bias error 

(MBE) and root mean square error (RMSE) values 
for surface wind speed; however, the latter 
exhibited a slightly poorer performance in the 
correlation score compared to the AN-NAM case 
and the reference case without nudging (NON). At 
the St. Albert station, the wind speed MBE was 
reduced from 1.21 m/s to 1.13 m/s and 1.05 m/s for 
the AN-NAM and ON-DD cases, respectively. 
Similarly, the mean bias error for wind speed at the 
Edmonton East station decreased from 1.47 m/s to 
1.41 m/s and 1.27 m/s for the corresponding 
scenarios. Fig. 3a1 and  Fig. 3b1 illustrate the 
effects of nudging in mitigating the episodic 
overestimation and underestimation of hourly wind 
speed values observed at ground level. Overall, the 
ON-DD case performed slightly better than both the 
AN-NAM and NON cases in predicting surface wind 
speed, highlighting the positive impact of 

Fig. 3: The Timeseries of Surface Wind Speed and Temperature for: a) St. Albert Stn., b) Edmonton East 
Stn. 

 
a1 

 

 
b1 

 
a2 

 
 

b2 

 
 

NON 

 

NA-NAD 

 

OA-DD 

 
Fig. 4: Comparison of the Temperature (White Lines) and Wind Speed Contours Over the Edmonton 

resolved by a) NON, b) NA-NAM, c) OA-DD cases 

a) St. Albert Stn. b) Edmonton East Stn. 
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incorporating high-resolution downscaling output 
into the nudging analysis. 

Similar to wind speed, the NA-NAM and OA-DD 
cases improved the MBE and RMSE for surface 
temperature at the St. Albert station (Fig. 3a2) 
without negatively impacting the correlation score. 
The mean bias at St. Albert improved from 1.51°C 
to 1.43°C and 1.37°C for the NA-NAM and OA-DD 
cases, respectively. However, the NA-NAM case 
performed worse than both the NON and OA-DD 
cases in predicting temperature at the Edmonton 
East station, with an MBE of 1.81°C compared to 
1.78°C for NON and 1.73°C for OA-DD (Fig. 3b2). 

Error! Reference source not found. 
illustrates the contours of temperature (white lines) 
and wind speed (colored shading) for the innermost 
WRF domain over Edmonton on July 18, 2019. It is 
evident that ingesting the high-resolution 
downscaling data (OA-DD) enables the WRF to 
better capture complex, fine-scale momentum 
fluxes and surface temperature compared to the 
NON and NA-NAM cases. 
3.3 Impacts of the Nudging on the CMAQ 
outputs. 
 

The hourly concentrations of PM2.5, O3, NO2, 
and at the St. Albert and Edmonton East stations 
were compared with the corresponding hourly-
averaged surface concentration outputs  
from CMAQ for the reference (NON) and OA-DD 
cases discussed earlier. 

Table 2: Comparison of CMAQ performance 
improvement under the NON and OA-DD scenarios for 

PM2.5, NO2, and O3 

 
A comparison between the impact of meteorology 
field from NON and OA-DD scenarios on the CMAQ 
output for PM₂.₅, NO₂, and O₃ concentrations (Table 
2) reveals improvements in model performance for 
the latter across all the metrics. For PM₂.₅, the OA-
DD case shows a decrease in mean absolute 
percentage error (MAPE) (0.47 to 0.42 at St. Albert, 

0.45 to 0.43 at Edmonton East), RMSE (7.7 to 5.8, 
and 7.7 to 6.2, respectively), and a substantial 
increase in  index of agreement (IOA) (0.40 to 0.62, 
0.33 to 0.55), indicating better alignment with 
observed values. Similar improvements are seen 
for NO₂, where MAPE drops (0.81 to 0.75 at St. 
Albert, 0.68 to 0.71 at Edmonton East), RMSE 
remains largely unchanged, but IOA improves (0.52 
to 0.58, and 0.45 to 0.49). For O₃, the OA-DD 
scenario reduces MAPE slightly (0.15 to 0.14 at St. 
Albert, 0.18 to 0.16 at Edmonton East), decreases 
RMSE marginally, and increases IOA (0.82 to 0.83, 
and 0.71 to 0.75), showing overall improved model 
performance across all pollutants and metrics with 
the improved surface meteorology outputted by 
OA-DD scenario. 
 
4. SUMMARY AND CONCLUSION 

 

This study enhanced meteorological and air 
quality predictions over Edmonton by integrating 
high-resolution data assimilation using a deep 
learning approach. A Residual Encoder-Decoder 
model with an attention mechanism was developed 
to downscale coarse-resolution weather data to a 
1.33 km resolution. The model was trained in two 
stages: first, downscaling from the NCEP Final 
Analysis at approximately 108 km to the NAM at 
12 km to capture essential patterns; second, using 
the learned weights to downscale from 12 km to 
1.33 km without direct fine-scale data. 

The high-resolution data generated were 
assimilated into the WRF model using 
observational nudging (ON-DD scenario) and 
compared with scenarios of no nudging (NON) and 
analysis nudging using NAM data (AN-NAM). The 
ON-DD scenario demonstrated significant 
improvements in predicting surface meteorological 
variables and air pollutant concentrations. 

At the St. Albert station, the mean bias error 
(MBE) for wind speed decreased from 1.21 m/s 
(NON) to 1.05 m/s (ON-DD), and for temperature, 
the MBE improved from 1.51°C to 1.37°C. At the 
Edmonton East station, wind speed MBE reduced 
from 1.47 m/s to 1.27 m/s, and temperature MBE 
improved from 1.78°C to 1.73°C. 

For air quality predictions, the ON-DD 
scenario reduced the mean absolute percentage 

error (MAPE) for PM₂.₅ concentrations from 0.47 
(NON) to 0.42 at St. Albert and from 0.45 to 0.43 at 
Edmonton East. The root mean square error 
(RMSE) for PM₂.₅ decreased from 7.7 μg/m³ to 
5.8 μg/m³ at St. Albert and from 7.7 μg/m³ to 
6.2 μg/m³ at Edmonton East. The index of 
agreement (IOA) for PM₂.₅ increased from 0.40 to 
0.62 and from 0.33 to 0.55, respectively. 

  St. Albert Edmonton East 
  MAPE RMSE IOA MAPE RMSE IOA 

NO
N  

PM2.5
* 0.47 7.7 0.40 0.45 7.7 0.33 

O3
** 0.15 0.008 0.82 0.18 0.009 0.71 

NO2
** 0.81 0.01 0.52 0.68 0.009 0.45 

O
A- DD 

PM2.5
* 0.42 5.8 0.62 0.43 6.2 0.55 

O3
** 0.14 0.007 0.83 0.16 0.008 0.75 

NO2
** 0.75 0.008 0.58 0.71 0.009 0.49 

* The unit is (µg/m3) 
** The unit is ppm 
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In conclusion, integrating high-resolution, deep 
learning downscaled data into meteorological 
models significantly enhances the accuracy of 
weather and air quality predictions, effectively 
bridging the gap between coarse-resolution data 
and the need for high-resolution forecasts in 
complex regions. 
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